Massive MIMO是5G通信中的关键技术,其技术进展度直接关系到5G通信的发展,各大产商对此做了大量方案及投入,但是5G天线技术仍面临巨大挑战。
★ FDD上下行信道的互易性问题
首先,大规模 MIMO天线需要解决如何快速、准确的捕捉不同终端的信号,如何将用户的信道信息反馈至每一个天线,以及如何降低用于捕捉终端反馈信号的功耗问题。
传统的方式是终端监控基站下发的导频信号,然后估计信道信息再反馈给基站,但这种方法在大规模天线技术中变得不再适用。因为5 G基站天线增多,终端向基站反馈信息会消耗大量的上行链路资源,不仅影响了网络质量还增加了时延,这是5 G技术所不能接受的。
目前使用较多的技术方案是基于 TDD(时分双工)的上、下行信道的对称性,利用终端向基站发送导频信号,基站监测上行链路,并基于信道对称性推断下行链路信息,从而快速、准确地调整天线状态。此技术可以在用户移动速度小于500km/h,保持与用户间的高质量通信。
但是, FDD技术的互易特性不好(互易性为在单一激励的情形下,激励端与响应端交换位置时,响应不因这种互换而有所改变的特性),如何解决 FDD的互易性是需要重点克服的问题之一。
★ 大规模MIMO天线波束赋形的算法问题
大规模天线波束赋形的算法比较复杂,当连接数成倍增加时,导致硬件不能及时完成实时计算,最终导致时延增加。而时延增加将导致实时响应要求高的业务无法进行、用户快速移动中的通信需求无法满足。算法的复杂度问题和多用户连接时的资源调度问题,是现在亟需解决的问题。
★ 大规模天线OTA测试问题
无论是5G基站还是兼容5G的移动设备,都可以拥有数百个无限电信道并同时进行扫描和处理,这让天线的测试变得越来越复杂。对于终端测试而言,5 G毫米波的测试不能再使用传统的连线测试,只能采用 OTA(空中下载技术测试)测试方法,而基于高频通信的 OTA测试方法及测试设备还在试验发展当中。
★信道建模及高频天线选址问题
天线振子数量的大幅增加,势必带来天线尺寸的增大。而要解决这一问题,就要使用高频通信来降低天线尺寸。众所周知,天线的尺寸由组成天线的半波振子决定,波长与频率成反比,因此提高通信频率可以降低天线振子的大小。大规模阵列式天线增加了天线振子数量,缩小了天线尺寸,传统以平面波为传播基础进行的信道建模将不再适用,必须考虑使用多平面或者曲面建模。
但高频通信又要解决毫米波技术的相关问题,同时高频天线的安装涉及到基站选址问题,公众担心高频辐射拒绝基站就近小区安装,这也是要解决的问题。
★ 大规模MIMO天线的功耗问题
5G基站的部署不管是皮基站还是大规模MIMO系统基站都面临功耗大、设备尺寸和重量大、部署成本高等问题。比如过去的小基站只需要满足单频段即可,而5 G的皮基站则需要支持三到四个频段,大规模 MIMO系统也将从普通8 T8 R(8个发射器,8个接收器)扩展为64 T64 R或128 T128 R系统,天线尺寸、重量和功耗都可能成倍增长,功耗与安装成本问题也是规模部署需要解决的问题。
结语
大规模天线技术在提高通信速率、频谱利用率、降低时延方面都有着杰出的作为,在5G通信领域占据重要位置。既今为止,此项技术尚未完全成熟,其中还有一段路需要走,相信随着时间和推进和研究的持续与深入,我们也将迎来崭新的时代。